Зарегистрироваться
Восстановить пароль
FAQ по входу

Дифференциальные уравнения

Постановка задачи. Нахождение состояний равновесия СДУ. Построение фазового портрета СДУ. Оценка области притяжения устойчивого состояния равновесия СДУ. Графики функций переходных процессов СДУ для контрольной траектории. Вывод.
  • №1
  • 140,00 КБ
  • дата добавления неизвестна
  • изменен
Постановка задачи Нахождение состояний равновесия СДУ Построение фазового портрета СДУ Оценка области притяжения устойчивого состояния равновесия СДУ и предельного цикла II рода Вывод
  • №2
  • 138,47 КБ
  • дата добавления неизвестна
  • изменен
Постановка задачи. Аналитическое точное решение дифференциального уравнения. Решение дифференциального уравнения приближёнными методами. Решение дифференциального уравнения методом изоклин. Решение дифференциального уравнения методом Эйлера. Решение дифференциального уравнения методом последовательных приближений. Решение дифференциального уравнения основным методом...
  • №3
  • 9,59 МБ
  • дата добавления неизвестна
  • изменен
ВГТУ, г. Воронеж, 2011 г., 4 стр. с приложением. Дисциплина: Математика. Лабораторная работа выполняется в системе Maple. —Нахождение общего решения. —Нахождение частного решения. —Решение системы уравнений. —Численное решение дифференциальных уравнений.
  • №4
  • 13,95 КБ
  • добавлен
  • изменен
В этом разделе нет файлов.

Комментарии

в разделе Дифференциальные уравнения #
Уважаемые: администратор, модераторы и доверенные пользователи.
Друзья, то что ранее предлагал Денис, я уже предлагаю официально, в разделе Дифференциальные уравнения создать новый подраздел Дифференциальные уравнения в частных производных, который является самостоятельной областью (направлением, ветвью) математики (Дифференциальных уравнений):
Это соответствует требованиям мировых и официальных стандартов, изложенных в Википедии:
1. Википедия (Дифференциальное уравнение):
"Дифференциальные уравнения в частных производных (УРЧП) — это уравнения, содержащие неизвестные функции от нескольких переменных и их частные производные".
2. Википедия (Дифференциальное уравнение в частных производных):
"Дифференциальное уравнение в частных производных (частные случаи также известны как уравнения математической физики, УМФ) — дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные".
3. Википедия (Категория: Дифференциальные уравнения): Отсюда следует вывод:
"Из Категории "Дифференциальные уравнения" -> Дифференциальное уравнение в частных производных".
Литература (20 книг) для переноса в новый подраздел Дифференциальные уравнения в частных производных:
...
С уважением, благодарностью и благословением,
в разделе Дифференциальные уравнения #
Уважаемый Админ.
Я благодарен Вам за добавление подраздела Дифференциальные уравнения в частных производных.
С уважением,
в разделе Дифференциальные уравнения #
Уважаемые: администратор, модераторы и доверенные пользователи.
Друзья, то что ранее предлагал Денис (от 07.03.2015), я уже предлагаю официально, в разделе Дифференциальные уравнения создать новый подраздел Обыкновенные дифференциальные уравнения (ОДУ), который является самостоятельной областью (направлением, ветвью) математики (Дифференциальных уравнений):
Это соответствует требованиям мировых и официальных стандартов, изложенных в Википедии:
1. Википедия (Дифференциальное_уравнение):
"Обыкновенные дифференциальные уравнения (ОДУ) — это уравнения, зависящие от одной независимой переменной"
2. Википедия (Обыкновенное дифференциальное уравнение):
"Обыкнове́нные дифференциа́льные уравне́ния (ОДУ) — это дифференциальные уравнения для функции от одной переменной".
3. Википедия (Категория: Дифференциальные уравнения): Отсюда следует вывод:
"Из Категории "Дифференциальные уравнения" -> Обыкновенное дифференциальное уравнение".
Литература (20 книг) для переноса в новый подраздел Обыкновенные дифференциальные уравнения:
...
С уважением, благодарностью и благословением,
в разделе Дифференциальные уравнения #
Уважаемый Админ.
Я благодарен Вам за добавление подраздела Обыкновенные дифференциальные уравнения.
С уважением,
в разделе Дифференциальные уравнения #
Неплохо бы отделить уравнения в частных производных от обыкновенных дифференциальных уравнений. Книг очень много, сложно ориентироваться.
в разделе Дифференциальные уравнения #
.
в разделе Дифференциальные уравнения #
Уважаемые коллеги!
Я столкнулся с тем, что литература о дифференциальном исчислении собирается в разделах "Файлы \ Математика \ Высшая математика \ Дифференциальные уравнения" (/files/mathematics/algebra/diffeq/) и "Файлы \ Математика \ Высшая математика \ Математический анализ" (/files/mathematics/algebra/analysis/).
Было бы желательно как-то объединить или связать эти разделы, или подчинить раздел "Дифференциальные уравнения" разделу "Математический анализ".
в разделе Дифференциальные уравнения #
Решения Филиппова можно найти здесь
http://mat-an.ru/filippov.php
в разделе Дифференциальные уравнения #
Где можно найти решения примеров из учебника Филиппова?(по дифурам)
в разделе Дифференциальные уравнения #
Краснов есть ли у кого?
В этом разделе нет комментариев.