Зарегистрироваться
Восстановить пароль
FAQ по входу

Keras

Требуется помощь в преобразовании раздела Информатика и вычислительная техника

Если Вы компетентны в тематике этого раздела, то Вас, возможно, заинтересует обсуждение планируемых преобразований.

Теги, соответствующие этому тематическому разделу

Файлы, которые ищут в этом разделе

Доверенные пользователи и модераторы раздела

Активные пользователи раздела

Packt Publishing, 2018. — 368 p. — ASIN B078N8RDCP. A comprehensive guide to advanced deep learning techniques, including Autoencoders, GANs, VAEs, and Deep Reinforcement Learning, that drive today's most impressive AI results Key Features Explore the most advanced deep learning techniques that drive modern AI results Implement Deep Neural Networks, Autoencoders, GANs, VAEs, and...
  • №1
  • 15,20 МБ
  • добавлен
  • изменен
Packt Publishing, 2018. — 368 p. — ASIN B078N8RDCP. A comprehensive guide to advanced deep learning techniques, including Autoencoders, GANs, VAEs, and Deep Reinforcement Learning, that drive today's most impressive AI results Key Features Explore the most advanced deep learning techniques that drive modern AI results Implement Deep Neural Networks, Autoencoders, GANs, VAEs, and...
  • №2
  • 20,49 МБ
  • добавлен
  • изменен
Packt Publishing, 2018. — 368 p. — ASIN B078N8RDCP. A comprehensive guide to advanced deep learning techniques, including Autoencoders, GANs, VAEs, and Deep Reinforcement Learning, that drive today's most impressive AI results Key Features Explore the most advanced deep learning techniques that drive modern AI results Implement Deep Neural Networks, Autoencoders, GANs, VAEs, and...
  • №3
  • 15,61 МБ
  • добавлен
  • изменен
Packt Publishing, 2018. — 368 p. — ASIN B078N8RDCP. !Code files only. A comprehensive guide to advanced deep learning techniques, including Autoencoders, GANs, VAEs, and Deep Reinforcement Learning, that drive today's most impressive AI results Key Features Explore the most advanced deep learning techniques that drive modern AI results Implement Deep Neural Networks, Autoencoders,...
  • №4
  • 123,16 МБ
  • добавлен
  • изменен
Packt Publishing, 2017. — 318 p. — ISBN 978-1-78712-842-2. True PDF Get to grips with the basics of Keras to implement fast and efficient deep-learning models This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image...
  • №5
  • 17,62 МБ
  • добавлен
  • изменен
Packt Publishing, 2017. — 318 p. — ISBN 978-1-78712-842-2. Get to grips with the basics of Keras to implement fast and efficient deep-learning models This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing...
  • №6
  • 6,50 МБ
  • добавлен
  • изменен
Packt Publishing, 2017. — 318 p. — ISBN 978-1-78712-842-2. Get to grips with the basics of Keras to implement fast and efficient deep-learning models This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing...
  • №7
  • 8,37 МБ
  • добавлен
  • изменен
Packt Publishing, 2017. — 318 p. — ISBN 978-1-78712-842-2. Get to grips with the basics of Keras to implement fast and efficient deep-learning models This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing...
  • №8
  • 8,59 МБ
  • добавлен
  • изменен
Amazon Digital Services LLC, 2018. — 189 р. This introduction will help you develop a good understanding of deep learning completely from scratch This book covers: Introduction to machine learning and deep learning Math for deep learning explained to the layman How neural networks work: a general overview Activation functions in deep networks Loss functions Weight initialization...
  • №9
  • 2,55 МБ
  • добавлен
  • изменен
Amazon Digital Services LLC, 2018. — 189 р. This introduction will help you develop a good understanding of deep learning completely from scratch This book covers: Introduction to machine learning and deep learning Math for deep learning explained to the layman How neural networks work: a general overview Activation functions in deep networks Loss functions Weight initialization...
  • №10
  • 2,53 МБ
  • добавлен
  • изменен
Amazon Digital Services LLC, 2018. — 189 р. This introduction will help you develop a good understanding of deep learning completely from scratch This book covers: Introduction to machine learning and deep learning Math for deep learning explained to the layman How neural networks work: a general overview Activation functions in deep networks Loss functions Weight initialization...
  • №11
  • 2,52 МБ
  • добавлен
  • изменен
Apress, 2019. — 182 p. Learn, understand, and implement deep neural networks in a math- and programming-friendly approach using Keras and Python. The book focuses on an end-to-end approach to developing supervised learning algorithms in regression and classification with practical business-centric use-cases implemented in Keras. The overall book comprises three sections with two...
  • №12
  • 2,13 МБ
  • добавлен
  • изменен
Apress, 2019. — 182 p. Learn, understand, and implement deep neural networks in a math- and programming-friendly approach using Keras and Python. The book focuses on an end-to-end approach to developing supervised learning algorithms in regression and classification with practical business-centric use-cases implemented in Keras. The overall book comprises three sections with two...
  • №13
  • 2,74 МБ
  • добавлен
  • изменен
М.: ДМК-Пресс, 2017. — 294 с. — ISBN 978-5-97060-573-8. Книга представляет собой краткое, но обстоятельное введение в современные нейронные сети, искусственный интеллект и технологии глубокого обучения. В ней представлено более 20 работоспособных нейронных сетей, написанных на языке Python с использованием модульной библиотеки Keras, работающей поверх библиотек TensorFlow от...
  • №14
  • 58,41 МБ
  • добавлен
  • изменен
В этом разделе нет файлов.

Комментарии

В этом разделе нет комментариев.