Зарегистрироваться
Восстановить пароль
FAQ по входу

Raghavarao D., Wiley J.B., Chitturi P. Choice-Based Conjoint Analysis: Models and Designs

  • Файл формата pdf
  • размером 1,84 МБ
  • Добавлен пользователем , дата добавления неизвестна
  • Отредактирован
Raghavarao D., Wiley J.B., Chitturi P. Choice-Based Conjoint Analysis: Models and Designs
Boca Raton: Chapman and Hall/CRC, 2010. — 180 p. — ISBN 978-1-4200-9997-3.
Conjoint analysis (CA) and discrete choice experimentation (DCE) are tools used in marketing, economics, transportation, health, tourism, and other areas to develop and modify products, services, policies, and programs, specifically ones that can be described in terms of attributes. A specific combination of attributes is called a concept profile. Building on the authors’ significant work in the field, Choice-Based Conjoint Analysis: Models and Designs explores the design of experiment (DOE) issues that occur when constructing concept profiles and shows how to modify commonly used designs for solving DCE and CA problems. The authors provide historical and statistical background and discuss the concepts and inference.
The book covers designs appropriate for four classes of DOE problems: (1) attributes in CA and DCE studies are often ordered; (2) studies increasingly are computer-assisted; (3) choice is often influenced by competition; and (4) constraints may exist on attribute levels. Discussion begins with commonly used "generic" designs. The text then presents designs that avoid "dominated" or "dominating" profiles that may occur with ordered attributes and explores the use of orthogonal polynomials to describe relationships between ordered attribute levels and preference. Computer administration entails limited "screen real estate" for presenting concept profiles. The book covers approaches for subsetting attributes and/or levels to "fit" profiles into available "screen real estate. " It then discusses strategies for sequential experimentation. Choice also is influenced by the availability of competing alternatives. The book uses availability and cross-effects designs to illustrate the design and analysis of portfolios and shows the relationship between availability effects and interaction effects in analysis of variance models. The last chapter highlights approaches to experimental design in which constraints are imposed on the levels of attributes. These designs provide the means to untangle the pricing and formulation problems in CA and DCE.
Introduction
Conjoint Analysis
Discrete Choice Experimentation
Random Utility Models
The Logistic Model
Contributions of the Book
Some Statistical Concepts
Principles of Experimental Design
Experimental versus Treatment Design
Balanced Incomplete Block Designs and 3-Designs
Factorial Experiments
Fractional Factorial Experiments
Hadamard Matrices and Orthogonal Arrays
Foldover Designs
Mixture Experiments
Estimation
Transformations of the Multinomial Distribution
Testing Linear Hypotheses
Generic Designs
Introduction
Four Linear Models Used in CA and DCE
Brands-Only Designs
Attributes-Only Designs
Brands-Plus-Attributes Designs
Brands, Attributes, and Interaction Design
Estimation and Hypothesis Testing
Appendix A. Logit Analysis of Traditional Conjoint Rating Scale Data
Designs with Ordered Attributes
Introduction
Linear, Quadratic, and Cubic Effects
Interaction Components: Linear and Quadratic
An Illustration
Pareto Optimal Designs
Inferences on Main Effects
Inferences on Main Effects in 2m Experiments
Inferences on Interactions
Orthogonal Polynomials
Substitution Rate of Attributes
Reducing Choice Set Sizes
Introduction
Subsetting Choice Sets
Subsetting Levels into Overlapping Sets
Subsetting Attributes into Overlapping Sets
Designs Generated from a BIBD
Cyclic Construction: s Choice Sets of Size s Each for an ss Experiment
Estimating a Subset of Interactions
Availability (Cross-Effects) Designs
Introduction
Brands-Only Availability Designs
Portfolio Designs
Brand and One (or More) Attributes
Brands and More than One Attribute
Sequential Methods
Introduction
Sequential Experiment to Estimate All Two- and ThreeAttribute Interactions
Sequential Methods to Estimate Main Effects and Interactions, Including a Common Attribute in 2m Experiments
CA Testing Main Effects and a Two-Factor Interaction Sequentially
Interim Analysis
Some Sequential Plans for 3m Experiments
Mixture Designs
Introduction
Mixture Designs: CA Example
Mixture Designs: DCE Example
Mixture–Amount Designs
Other Mixture Designs
Mixture Designs: Field Study Illustration
References
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация