Зарегистрироваться
Восстановить пароль
FAQ по входу

Kneusel Ronald T. Math For Deep Learning: What You Need to Know to Understand Neural Networks

  • Файл формата zip
  • размером 8,96 МБ
  • содержит документ формата mobi
Kneusel Ronald T. Math For Deep Learning: What You Need to Know to Understand Neural Networks
No Starch Press, 2022. — 344 p. — ISBN 978-1-7185-0190-4.
With Math for Deep Learning, you'll learn the essential mathematics used by and as a background for deep learning. You'll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow in a neural network, backpropagation, and gradient descent. You'll also use Python to work through the mathematics that underlies those algorithms and even build a fully-functional neural network. In addition you'll find coverage of gradient descent including variations commonly used by the deep learning community: SGD, Adam, RMSprop, and Adagrad/Adadelta.
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация