Зарегистрироваться
Восстановить пароль
FAQ по входу

Bertail P., Soulier P., Doukhan P. (eds.) Dependence in Probability and Statistics

  • Файл формата pdf
  • размером 5,20 МБ
Bertail P., Soulier P., Doukhan P. (eds.) Dependence in Probability and Statistics
Berlin: Springer, 2006. — 490 p.
This book gives a detailed account of some recent developments in the field of probability and statistics for dependent data. The book covers a wide range of topics from Markov chain theory and weak dependence with an emphasis on some recent developments on dynamical systems, to strong dependence in times series and random fields. A special section is devoted to statistical estimation problems and specific applications. The book is written as a succession of papers by some specialists of the field, alternating general surveys, mostly at a level accessible to graduate students in probability and statistics, and more general research papers mainly suitable to researchers in the field.
The first part of the book considers some recent developments on weak dependent time series, including some new results for Markov chains as well as some developments on new notions of weak dependence. This part also intends to fill a gap between the probability and statistical literature and the dynamical system literature. The second part presents some new results on strong dependence with a special emphasis on non-linear processes and random fields currently encountered in applications. Finally, in the last part, some general estimation problems are investigated, ranging from rate of convergence of maximum likelihood estimators to efficient estimation in parametric or non-parametric time series models, with an emphasis on applications with non-stationary data.
Patrice Bertail is researcher in statistics at CREST-ENSAE, Malakoff and Professor of Statistics at the University-Paris X. Paul Doukhan is researcher in statistics at CREST-ENSAE, Malakoff and Professor of Statistics at the University of Cergy-Pontoise. Philippe Soulier is Professor of Statistics at the University-Paris X.
Contents :
Front Matter
Regeneration-based statistics for Harris recurrent Markov chains
Subgeometric ergodicity of Markov chains
Limit Theorems for Dependent U-statistics
Recent results on weak dependence for causal sequences. Statistical applications to dynamical systems
Parametrized Kantorovich-Rubinštein theorem and application to the coupling of random variables
Exponential inequalities and estimation of conditional probabilities
Martingale approximation of non adapted stochastic processes with nonlinear growth of variance
Front Matter
Almost periodically correlated processes with long memory
Long memory random fields
Long Memory in Nonlinear Processes
A LARCH(∞) Vector Valued Process
On a Szegö type limit theorem and the asymptotic theory of random sums, integrals and quadratic forms
Aggregation of Doubly Stochastic Interactive Gaussian Processes and Toeplitz forms of U -Statistics
Front Matter
On Efficient Inference in GARCH Processes
Almost sure rate of convergence of maximum likelihood estimators for multidimensional diffusions
Convergence rates for density estimators of weakly dependent time series
Variograms for spatial max-stable random fields
A non-stationary paradigm for the dynamics of multivariate financial returns
Multivariate Non-Linear Regression with Applications
Nonparametric estimator of a quantile function for the probability of event with repeated data.
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация