Зарегистрироваться
Восстановить пароль
FAQ по входу

Masters Timothy. Assessing and Improving Prediction and Classification: Theory and Algorithms in C++

  • Файл формата pdf
  • размером 5,36 МБ
  • Добавлен пользователем
  • Описание отредактировано
Masters Timothy. Assessing and Improving Prediction and Classification: Theory and Algorithms in C++
Apress, 2018. — 517 p. — ISBN: 978-1484233351.
Assess the quality of your prediction and classification models in ways that accurately reflect their real-world performance, and then improve this performance using state-of-the-art algorithms such as committee-based decision making, resampling the dataset, and boosting. This book presents many important techniques for building powerful, robust models and quantifying their expected behavior when put to work in your application.
Considerable attention is given to information theory, especially as it relates to discovering and exploiting relationships between variables employed by your models. This presentation of an often confusing subject avoids advanced mathematics, focusing instead on concepts easily understood by those with modest background in mathematics.
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация