Зарегистрироваться
Восстановить пароль
FAQ по входу

Qi Y., Peng L. Inference for Heavy-Tailed Data: Applications in Insurance and Finance

  • Файл формата pdf
  • размером 2,63 МБ
  • Добавлен пользователем
  • Отредактирован
Qi Y., Peng L. Inference for Heavy-Tailed Data: Applications in Insurance and Finance
Academic Press, 2017. — 178 p. — ISBN 978-0-12-804676-0.
Heavy tailed data appears frequently in social science, internet traffic, insurance and finance. Statistical inference has been studied for many years, which includes recent bias-reduction estimation for tail index and high quantiles with applications in risk management, empirical likelihood based interval estimation for tail index and high quantiles, hypothesis tests for heavy tails, the choice of sample fraction in tail index and high quantile inference. These results for independent data, dependent data, linear time series and nonlinear time series are scattered in different statistics journals. Inference for Heavy-Tailed Data Analysis puts these methods into a single place with a clear picture on learning and using these techniques.
Key Features
Contains comprehensive coverage of new techniques of heavy tailed data analysis
Provides examples of heavy tailed data and its uses
Brings together, in a single place, a clear picture on learning and using these techniques
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация