Зарегистрироваться
Восстановить пароль
FAQ по входу

Fernández J.A., Hernández-Verón M.Á. Newton’s Method: an Updated Approach of Kantorovich’s Theory

  • Файл формата pdf
  • размером 1,86 МБ
  • Добавлен пользователем
  • Отредактирован
Fernández J.A., Hernández-Verón M.Á. Newton’s Method: an Updated Approach of Kantorovich’s Theory
Springer International Publishing AG, 2017. — 175 p. — (Frontiers in Mathematics) — ISBN 3319559753.
This book shows the importance of studying semilocal convergence in iterative methods through Newton's method and addresses the most important aspects of the Kantorovich's theory including implicated studies. Kantorovich's theory for Newton's method used techniques of functional analysis to prove the semilocal convergence of the method by means of the well-known majorant principle.
To gain a deeper understanding of these techniques the authors return to the beginning and present a deep-detailed approach of Kantorovich's theory for Newton's method, where they include old results, for a historical perspective and for comparisons with new results, refine old results, and prove their most relevant results, where alternative approaches leading to new sufficient semilocal convergence criteria for Newton's method are given. The book contains many numerical examples involving nonlinear integral equations, two boundary value problems and systems of nonlinear equations related to numerous physical phenomena. The book is addressed to researchers in computational sciences, in general, and in approximation of solutions of nonlinear problems, in particular.
Contents
The classic theory of Kantorovich
Convergence conditions on the second derivative of the operator
Convergence conditions on the k-th derivative of the operator
Convergence conditions on the first derivative of the operator
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация