Зарегистрироваться
Восстановить пароль
FAQ по входу

McNicholas P.D. Mixture Model-Based Classification

  • Файл формата pdf
  • размером 11,07 МБ
  • Добавлен пользователем
  • Отредактирован
McNicholas P.D. Mixture Model-Based Classification
Taylor & Francis Group, LLC, 2017. — 251 p. — ISBN: 1482225662
"This is a great overview of the field of model-based clustering and classification by one of its leading developers. McNicholas provides a resource that I am certain will be used by researchers in statistics and related disciplines for quite some time. The discussion of mixtures with heavy tails and asymmetric distributions will place this text as the authoritative, modern reference in the mixture modeling literature." (Douglas Steinley, University of Missouri)
Mixture Model-Based Classification is the first monograph devoted to mixture model-based approaches to clustering and classification. This is both a book for established researchers and newcomers to the field. A history of mixture models as a tool for classification is provided and Gaussian mixtures are considered extensively, including mixtures of factor analyzers and other approaches for high-dimensional data. Non-Gaussian mixtures are considered, from mixtures with components that parameterize skewness and/or concentration, right up to mixtures of multiple scaled distributions. Several other important topics are considered, including mixture approaches for clustering and classification of longitudinal data as well as discussion about how to define a cluster
Paul D. McNicholas is the Canada Research Chair in Computational Statistics at McMaster University, where he is a Professor in the Department of Mathematics and Statistics. His research focuses on the use of mixture model-based approaches for classification, with particular attention to clustering applications, and he has published extensively within the field. He is an associate editor for several journals and has served as a guest editor for a number of special issues on mixture models.
Contents
Introduction
Mixtures of Multivariate Gaussian Distributions
Mixtures of Factor Analyzers and Extensions
Dimension Reduction and High-Dimensional Data
Mixtures of Distributions with Varying Tail Weight
Mixtures of Generalized Hyperbolic Distributions
Mixtures of Multiple Scaled Distributions
Methods for Longitudinal Data
Miscellania
Appendixes
Linear Algebra Results
Matrix Calculus Results
Method of Lagrange Multipliers
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация