Восстановить пароль
FAQ по входу

Fairchild M.D. Color Appearance Models

  • Файл формата pdf
  • размером 5,57 МБ
  • Добавлен пользователем
  • Отредактирован
Fairchild M.D. Color Appearance Models
John Wiley, 2013. — 469. Third Edition
This book is about one of the major unresolved issues in the field of color science, the efforts that have been made toward its resolution, and the techniques that can be used to address current technological problems. The issue is the prediction of the color appearance experienced by an observer when viewing stimuli in natural, complex settings. Useful solutions to this problem have impacts in a number of industries such as lighting, materials, and imaging. In lighting, color appearance models can be used to predict the color rendering properties of various light sources allowing specification of quality rather than just efficiency. In materials fields (coatings, plastics, textiles, etc.), color appearance models can be used to specify tolerances across a wider variety of viewing conditions than is currently possible and to more accurately evaluate metamerism. The imaging industries have produced the biggest demand for accurate and practical color appearance models. The rapid growth in color imaging technology, particularly the desktop publishing and digital photography markets, has led to the emergence of color management systems. It is widely acknowledged that such systems require color appearance models to allow images originating in one medium and viewed in a particular environment to be acceptably reproduced in a second medium and viewed under different conditions. While the need for color appearance models is recognized, their development has been at the forefront of color science and largely confined to the discourse of academic journals and conferences. This book brings the fundamental issues and current solutions in the area of color appearance modeling together in a single place for those needing to solve practical problems or looking for background for ongoing research projects.
Everyone knows what color is, but the accurate description and specification of colors is quite another story. In 1931, the Commission Internationale de l’Eclairage (CIE) recommended a system for color measurement establishing the basis for modern colorimetry. That system allows the specification of color matches through CIE XYZ tristimulus values. It was immediately recognized that more advanced techniques were required. The CIE recommended the CIELAB and CIELUV color spaces in 1976 to enable uniform international practice for the measurement of color differences and establishment of color tolerances. While the CIE system of colorimetry has been applied successfully for over 80 years, it is limited to the comparison of stimuli that are identical in every spatial and temporal respect and viewed under matched viewing conditions. CIE XYZ values describe whether or not two stimuli match. CIELAB values can be used to describe the perceived differences between stimuli in a single set of viewing conditions. Color appearance models extend the current CIE systems to allow the description of what color stimuli would look like under a variety of viewing conditions. The application of such models opens up a world of possibilities for the accurate specification, control, and reproduction of color.
Understanding color-appearance phenomena and developing models to predict them have been the topics of a great deal of research — particularly in the last 20-30 years. Color appearance remains a topic of much active research that is often being driven by technological requirements. Despite the fact that the CIE is not yet able to recommend a single color appearance model as the best available for all applications, there are many who need to implement some form of a model to solve their research, development, and engineering needs. One such application is the development of color management systems based on the International Color Consortium (ICC) Profile Format that continues to be developed by the ICC and incorporated into essentially all modern computer operating systems. Implementation of color management using ICC profiles requires the application of color appearance models with no specific instructions on how to do so. Unfortunately, the fundamental concepts, phenomena, and models of color appearance are not recorded in a single source. Generally, one interested in the field must search out the primary references across a century of scientific journals and conference proceedings. This is due to the large amount of active research in the area. While searching for and keeping track of primary references is fine for those doing research on color appearance models, it should not be necessary for every scientist, engineer, and software developer interested in the field. The aim of this book is to provide the relevant information for an overview of color appearance and details of many of the most widely used models in a single source. The general approach has been to first provide an overview of the fundamentals of color measurement and the phenomena that necessitate the development of color appearance models. This eases the transition into the formulation of the various models and their applications that appear later in the book. This approach has proven quite useful in various university courses, short courses, and seminars in which the full range of material must be presented in a limited time.
Human Color Vision
Color Appearance Terminology
Color Order Systems
Color Appearance Phenomena
Viewing Conditions
Chromatic Adaptation
Chromatic Adaptation Models
Color Appearance Models
The Nayatani et al. Model
The Hunt Model
The RLAB Model
Other Models
The CIE Color Appearance Model (1997), CIECAM97s
Testing Color Appearance Models
Traditional Colorimetric Applications
Device-Independent Color Imaging
Image Appearance Modeling and the Future
High-Dynamic-Range Color Space
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация