Wiley-VCH Verlag GmbH & Co. KGaA, 2002. – 187 p. – ISBN: 978-3-527-29714-6.
Advances in important areas of environmental and food analysis would be unthinkable without gas chromatography in capillary columns. Many years elapsed between the introduction of capillary columns (open-tubular columns, Golay 1958) into gas chromatographic analysis and the widespread adoption of this technique in practice. The reasons for this delay lay in the difficulties of column technology, instrumentation, and methodology encountered in the use of very narrow capillaries with their very small sample capacity. The process of acceptance received a considerable boost through the introduction of fused silica capillaries (Dandeneau, 1978). Thanks to the column geometry, capillary GC is a miniaturized separating analytical process. In general, GC can only be used for volatile compounds or those which can be vaporized without decomposition at high temperatures. Because of the low sample capacity of systems with capillary columns, environmental analysis with high resolution chromatographic methods places stringent demands on the separation, detection, and identification of analytes in matrices of complex composition. This is particularly true of samples containing very small concentrations of the toxic substances to be detected and determined. Such analysis is possible only with special sample introduction techniques. Detection with the necessary very low detection limits for toxic compounds can be accomplished with comparative ease on use of the ionization detectors available in GC.
From the ContentsApplication of the Rules of Chromatography to Capillary Gas Chromatography
GU/MS Determination of Residues and Contaminants
Determination of PAH in Foods
The Mass Spectrometer as Detector in Capillary GC