Зарегистрироваться
Восстановить пароль
FAQ по входу

Gopalakrishnan K. Soft Computing in Green and Renewable Energy Systems

  • Файл формата pdf
  • размером 5,60 МБ
  • Добавлен пользователем
  • Отредактирован
Gopalakrishnan K. Soft Computing in Green and Renewable Energy Systems
Springer-Verlag Berlin Heidelberg, 2011. XIV, 306p. 147 illus., 73 illus. in color. — ISBN 978-3-642-22175-0, e-ISBN 978-3-642-22176-7, DOI 10.1007/978-3-642-22176-7.
State-of-the-art applications of soft computing techniques to green and renewable energy systems
Presents soft computing techniques and hybrid intelligent systems for designing, modeling, characterizing, optimizing, forecasting, and performance prediction of green and renewable energy systems
Written by leading experts in the field
Soft Computing in Green and Renewable Energy Systems provides a practical introduction to the application of soft computing techniques and hybrid intelligent systems for designing, modeling, characterizing, optimizing, forecasting, and performance prediction of green and renewable energy systems. Research is proceeding at jet speed on renewable energy (energy derived from natural resources such as sunlight, wind, tides, rain, geothermal heat, biomass, hydrogen, etc.) as policy makers, researchers, economists, and world agencies have joined forces in finding alternative sustainable energy solutions to current critical environmental, economic, and social issues. The innovative models, environmentally benign processes, data analytics, etc. employed in renewable energy systems are computationally-intensive, non-linear and complex as well as involve a high degree of uncertainty. Soft computing technologies, such as fuzzy sets and systems, neural science and systems, evolutionary algorithms and genetic programming, and machine learning, are ideal in handling the noise, imprecision, and uncertainty in the data, and yet achieve robust, low-cost solutions. As a result, intelligent and soft computing paradigms are finding increasing applications in the study of renewable energy systems. Researchers, practitioners, undergraduate and graduate students engaged in the study of renewable energy systems will find this book very useful.
Content Level » Research
Keywords » Green Energy - Renewable Energy - Soft Computing
Related subjects » Artificial Intelligence - Computational Intelligence and Complexity - Energy Technology - Environmental Engineering and Physics
Table of Contents
From the content:
Soft Computing Applications in Thermal Energy Systems.
Use of Soft Computing Techniques in Renewable Energy Hydrogen Hybrid Systems.
Soft Computing in Absorption Cooling Systems.
A Comprehensive Overview of Short Term Wind Forecasting Models based on Time Series Analysis.
Load Flow with Uncertain Loading and Generation in Future Smart Grids.
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация